Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers
نویسندگان
چکیده
In a rapidly changing world we need methods to efficiently assess biodiversity in order to monitor ecosystem trends. Ecological monitoring often uses plant community composition to infer quality of sites but conventional aboveground surveys only capture a snapshot of the actively growing plant diversity. Environmental DNA (eDNA) extracted from soil samples, however, can include taxa represented by both active and dormant tissues, seeds, pollen, and detritus. Analysis of this eDNA through DNA metabarcoding provides a more comprehensive view of plant diversity at a site from a single assessment but it is not clear which DNA markers are best used to capture this diversity. Sequence recovery, annotation, and sequence resolution among taxa were evaluated for four established DNA markers (matK, rbcL, ITS2, and the trnL P6 loop) in silico using database sequences and in situ using high throughput sequencing of 35 soil samples from a remote boreal wetland. Overall, ITS2 and rbcL are recommended for DNA metabarcoding of vascular plants from eDNA when not using customized or geographically restricted reference databases. We describe a new framework for evaluating DNA metabarcodes and, contrary to existing assumptions, we found that full length DNA barcode regions could outperform shorter markers for surveying plant diversity from soil samples. By using current DNA barcoding markers rbcL and ITS2 for plant metabarcoding, we can take advantage of existing resources such as the growing DNA barcode database. Our work establishes the value of standard DNA barcodes for soil plant eDNA analysis in ecological investigations and biomonitoring programs and supports the collaborative development of DNA barcoding and metabarcoding.
منابع مشابه
Optimization of the Analysis of Almond DNA Simple Sequence Repeats (SSRs) Through Submarine Electrophoresis Using Different Agaroses and Staining Protocols
Simple sequence repeat (SSR markers or microsatellites), based on the specific PCR amplification of DNA sequences, are becoming the markers of choice for molecular characterization of a wide range of plants because of their high polymorphism, abundance, and codominant inheritance. Different methods have been used for the analysis of the SSR amplified fragments being submarine agarose electropho...
متن کاملEnvironmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes
Describing and monitoring biodiversity comprise integral parts of ecosystem management. Recent research coupling metabarcoding and environmental DNA (eDNA) demonstrate that these methods can serve as important tools for surveying biodiversity, while significantly decreasing the time, expense and resources spent on traditional survey methods. The literature emphasizes the importance of genetic m...
متن کاملDNA from soil mirrors plant taxonomic and growth form diversity.
Ecosystems across the globe are threatened by climate change and human activities. New rapid survey approaches for monitoring biodiversity would greatly advance assessment and understanding of these threats. Taking advantage of next-generation DNA sequencing, we tested an approach we call metabarcoding: high-throughput and simultaneous taxa identification based on a very short (usually <100 bas...
متن کاملSpatial Representativeness of Environmental DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural Freshwater System
In the last few years, the study of environmental DNA (eDNA) has drawn attention for many reasons, including its advantages for monitoring and conservation purposes. So far, in aquatic environments, most of eDNA research has focused on the detection of single species using species-specific markers. Recently, species inventories based on the analysis of a single generalist marker targeting a lar...
متن کاملAssesment of different DNA extraction methods in medicinal plants
Medicinal plants have high importance in medicine and pharmacogonosy because of their secondary metabolites. Essential oils, antioxidants and flavonoids are the major compounds of many medicinal plants. These compounds especially antioxidants can increase oxidation of DNA in response to wounds. Nowadays, progresses in biotechnology such as molecular markers were used for phylogenetic relationsh...
متن کامل